

Presses & Automation – Since 1975

AZIMUTH MACHINERY

T. 450 632 8080 • sales@azimuthpress.com • www.azimuthpress.com 6040 Route 132, Ste-Catherine, Quebec, Canada, J5C 1B6

AZIMUTH MACHINERY

T. 450 632 8080 • sales@azimuthpress.com • www.azimuthpress.com 6040 Route 132, Ste-Catherine, Quebec, Canada, J5C 1B6

1.Importance of operating manual

This manual is written in order to become familiar with all the functions and possible applications of our machine. It contains important instruction about how to use the machine safely; according to the purpose designated.

Following these instructions is not only essential to avoid risks. It also reduces repair costs and down-time and increases the products reliability and service-life. Anyone who works with the machine should follow the instructions in this manual, particularly the safety related instructions.

Additionally local rules and regulations relating to environmental safety and accident prevention may be applied.

2. User-responsibility

Only allow persons to work with the machine who are familiar with the general instructions on how to work safely and to prevent accidents. The use of the instrument should have been instructed duly *THE SAFETY Chapter* and the warnings in this manual should have been read and understood.

3. Responsibility of operator

Before commencing work anyone apponited to work with the machine should pay attention to the general regulations to working safety and accident prevention. The safety chapter and the warnings in this manual should have been read and understood.

4. Dangers

This machine is designed and manufactured according to advanced technical standards and recognized safety regulations. However, improper use of the machine for work may result in a danger to the life and health of the operator or others, or damage to the machine or other property. Therefore the machine should only be used for its designated purpose, and in a perfect technical condition, Any defect that could have a negative effect on safety should be repaired immediately.

5. Designated purpose

The *electronically controlled program of Azimuth machines* is specially designed for pressing and riveting sheets of various materials.

AZIMUTH will not be held liable for damage resulting from improper use. Designated purpose also includes properly observing all instructions in the operation manual, and adherence to inspection and maintenance schedules.

6. Copyright

The copyright of this operating manual remains with AZIMUTH MACHINERY.

This operating manual is intended solely for the user and his personnel.Infringement of this restriction may lead to legal action may be taken if this restriction is infringed upon

T. 450 632 8080 • sales@azimuthpress.com • www.azimuthpress.com 6040 Route 132, Ste-Catherine, Quebec, Canada, J5C 1B6

7. Manufacturer's & Supplier's address

Adresse: 6040 QC-132, Sainte-Catherine, QC J5C 1B6

Téléphone : (450) 632-8080

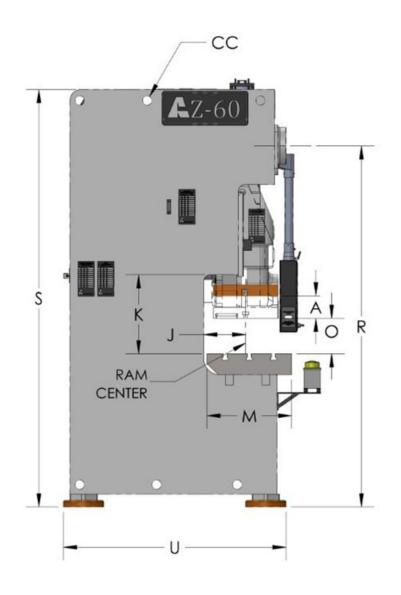
Province : Québec Countray : CANADA SALES@AZIMUTHPRESS.COM

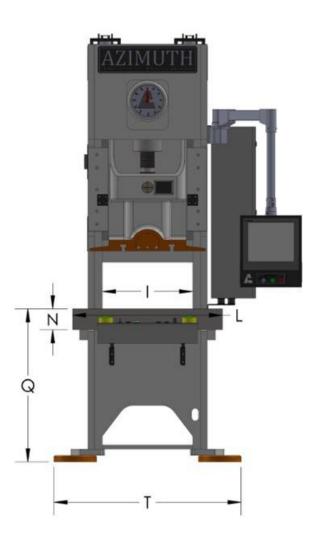
<u> https://azimuthpress.com/</u>

Table of Contents

1.SPECIFICATION (AZ1 & AZ2)	6
Dimension of bolster and slide AZ1	
Bed dimension	8
Specification Table AZ1 (Dimensions, weight)	g
Counter balance Settings	11
Rated tonnage graph	12
Press layout AZ1	13
Press capacity curve AZ2	21
Press layout AZ2	23
2.Safety instruction & Instrument Preparation	25
2.1 Safety precautions	
2.1.1 Start-up inspection	
3.Transport and Installation	30
3.1 Acceptance inspection	30
3.2 Carrying	31
3.2.3 Lifting procedures:	31
Disassembly	32
3.3 Installation	33
Installation of frame and bolster	33
Leveling	34
Main motor installation	35
Oil filling requirement	37
Air connection	39
Installation & START-UP Functional diagram	40
Oil quantity	41
Air lines system	42
Main components and Function (AZ1 & AZ2)	, <u>4</u> 4
Main components – AZ1	44
Main components – AZ2	45
Maintenance	,47
Mechanical Set-up	47
Adjusting the Shut Height	47

Nam and Gibs Maintenance						
Cleaning the Ram Contact Surfaces	48					
Checking Gibs Clearance	49					
Adjusting Gibs Clearance	50					
Checking Ram and Bed Parallelism	51					
Checking Main bushing clearance & ball-screw clearance	53 54					
Adjusting Belt Tension						
Hydraulic Overload protection (HOLP)						
Adjusting the hydraulic overload						
Wet-clutch assembly						
Balance cylinder	58					
Changing oil	61					
Air diagram	70					
	70					
Operating the Press	71					
Using the Operator Station	71					
Using the Auxiliary and Optional Equipment	72					
Automatic Oiling System	72					
Automatic centralized greasing system	73					
Bleeding the Automatic Greasing System	73					
Light Curtains (Optional)	76					
TROUBLESHOOTING	77					
Annexe A - PARTS	79					
Annexe B – Yearly Maintenance check	84					
MAIN BUSHINGS & OVERALL CLEARANCE	85					
AIR-CLUTCH & BRAKE	86					
OILING SYSTEM for counter balance*	88					
PRESS OVERALL GUARDING	89					
Bolster plate	89					
Die height adjustment (motorized)	89					
Main motor drive	89					
Warranty plan on part-revolution presses model 6-AC TO 44-	AC, AZ1					
MODELS, AZ2 MODELS, AZ-S1 MODELS, AZ-S2 MODELS						
Years on air-clutch & electrical components						


rears mechanical parts warranty	
Year warranty on Hydraulic & others air-components	92



1.SPECIFICATION (AZ1 & AZ2)

1.1.1 Press dimension **AZ1 (60 to 340)**

Dimension of bolster and slide **AZ1**

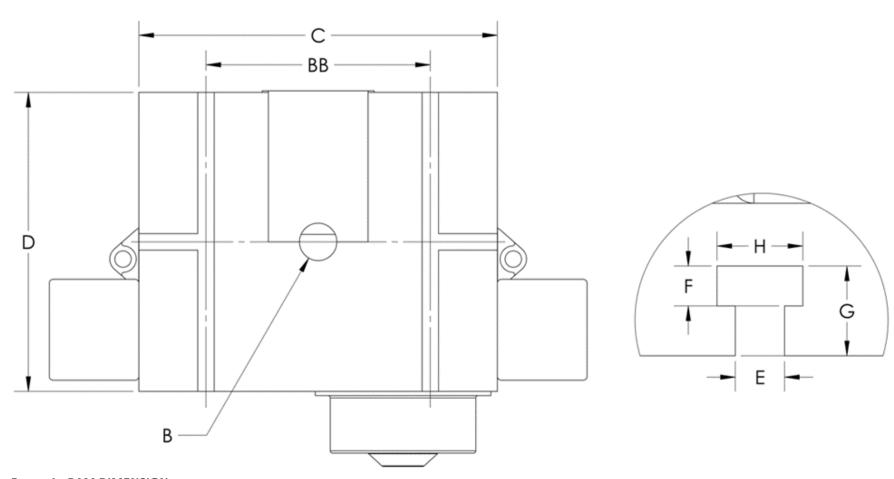


FIGURE 1 - RAM DIMENSION

Bed dimension

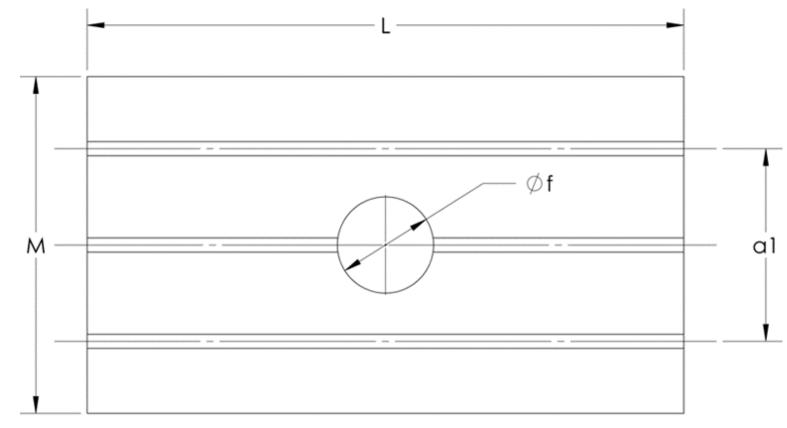


FIGURE 2 - BED DIMENSION

Figure 1.1.2 AZ1 Press Bed Dimensions

Parameter		AZ1-60		A1-	A1-Z80		AZ1-110		-140	
Туре		S	S L		L	S	L	S	L	
Nominal Capacit	У	6	66	8	8	1	10	140		
Rated at BDC		0.1	157		0.	197		0.2	236	
Slide Stroke	Α	3.150	5.512	3.937	6.299	3.937	6.299	4.331	7.087	
SPM RANGE		60 - 115	45 - 85	55 - 100	40 - 75	55 - 100	35 - 65	50 - 90	35 - 65	
MAX. Die Heigh	t	12.992	11.811	13.780	12.598	14.370	13.189	15.157	13.780	
Height Adjustme	nt	2.7	756	3.1	.50		3.5	43		
MIN. Die Height	0	10.236	9.055	10.630	12.598	10.827	9.646	11.614	10.236	
Throat Depth	J	10.	630	12.	250	12.875		13.750		
	С	18.	875	21.250			24.375			
RAM	D	15.	750	18.	125	20.375				
	В		1.9	7 2.			36			
	L	36.	625	37.375		41.750		43.250		
BED	М	20.	.500 23.6		625	25.125		26.750		
	f		7.0)9		8.66				
	Ε				0.0	866				
T-SLOTS	F	0.669								
1-31013	G		1.496							
	Н			1.496						
Floor to Bed	Q		3:			5.5				
	U	6	52	7	0		8	0		
Overall	Т		4	8			56			
	S	10	02	13	10	120		125		
Weight (lbs)		113	354	142	220	19	070	210	21054	

Parameter		AZ1-175		AZ1-200		AZ1-250		AZ1-340		
Туре		S	L	S	L	S	L	S	L	
Nominal Capacit	У	175		22	20	2	75	34	10	
Rated at BDC			0.2	36		0.3	256	0.2	276	
Slide Stroke	Α	5.118	7.874	5.906	8.661	6.299	8.661	6.299	8.661	
SPM RANGE		35 - 70	30 - 55	35 - 65	30 - 55	30 - 55	20 - 35	30 - 55	20 - 35	
MAX. Die Height	0	17.126	15.748	19.094	17.717	20.866	19.685	20.866	25.591	
Height Adjustme	nt	3.9	937	4.3	31		4.7	24		
MIN. Die Height	0	13.189	11.811	14.764	13.386	16.142	14.961	16.142	20.866	
Throat Depth	J	15.	750	16.	875		17.7	700		
	С	27.	500	34.625		37.375				
RAM	D	22.	875	25.	25.500 27.5		500			
	В		2.5	6			2.7	.76		
	L	46.	063	54.750		59.063		60.	625	
BED	М	29.	875	33.	063	34.625				
	f		10.	24	24 11.			02		
	Е				1.	.10				
T-SLOTS	F			0.87						
1-31013	G	1.89								
	Н				1.89					
Floor to Bed	Q	35.5				39	9.4			
	U	9	92	10)5	1	10	13	15	
Overall	Т	6	50	7	0		70	8	0	
	S	1	36	15	50	160		170		
Weight (lbs)		29	983	423	329	51	147	586	543	

Counter balance Settings

The graph **Error! Reference source not found.** indicates the required air pressure, in PSI, in function of the upper d ie weight, in lbs. This ensures that there will be no clutch slippage due to low air pressure during the cycle.

The air pressure can be adjusted from the provided FRL by turning the valve knob.

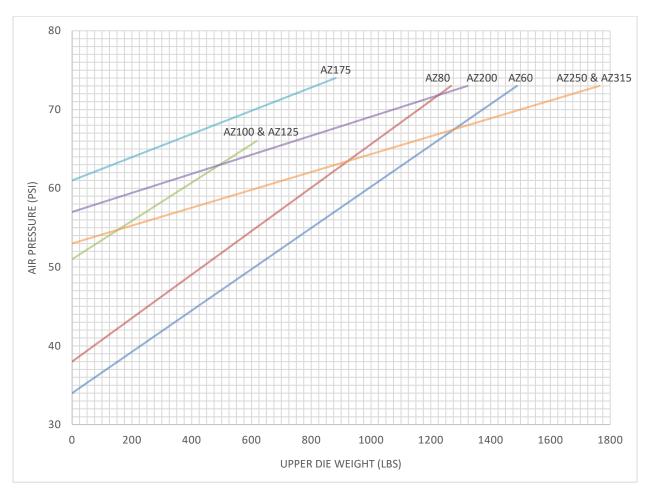


FIGURE 3 - COUNTERBALANCE PRESSURE CHART

Rated tonnage graph

The graphs **Error! Reference source not found.** show the capacity of AZ1 presses, in kilonewtons, in function of the d istance from bottom dead center. This is useful to determine the pressing capacity for a given material thickness.

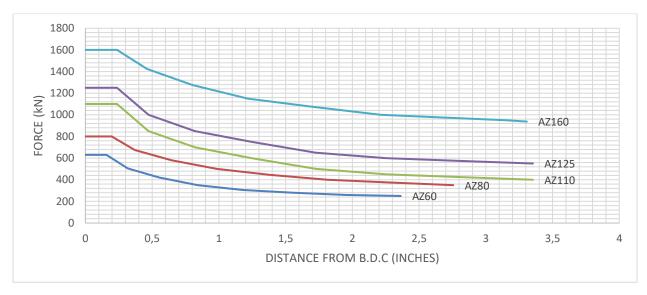
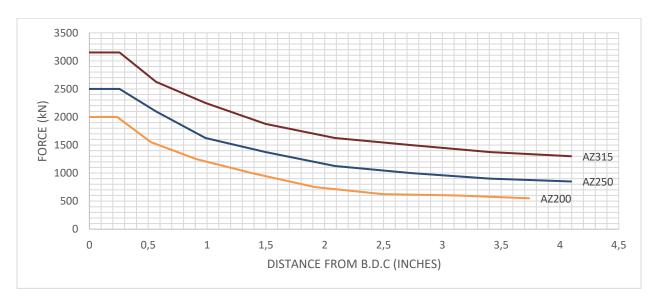


FIGURE 4 - RATED TONNAGE FROM BDC



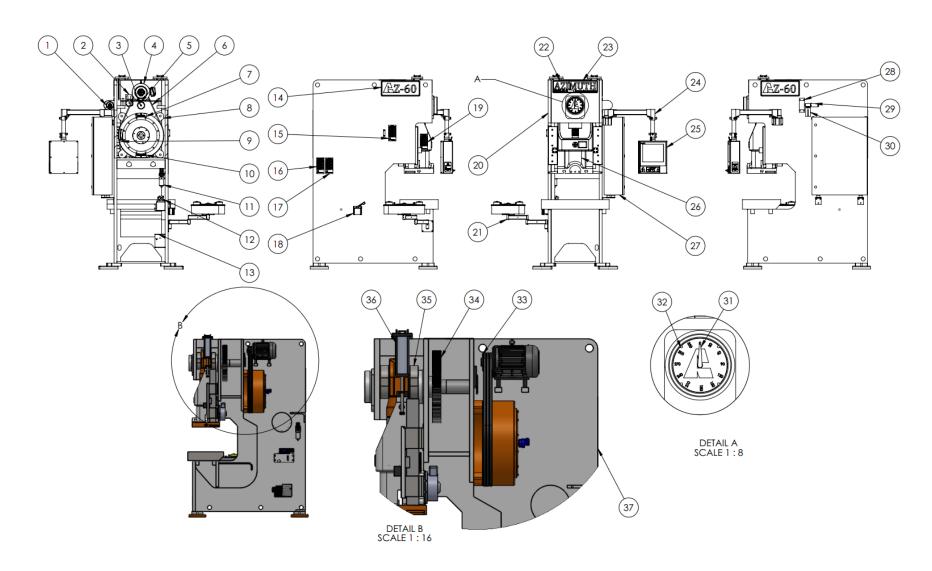
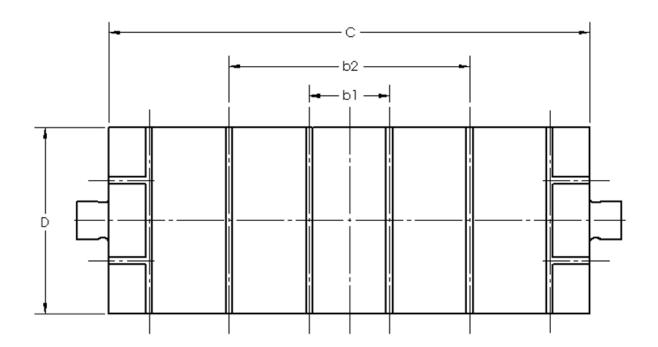
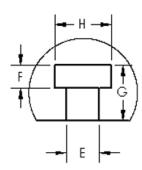

FIGURE 5 - RATED TONNAGE FROM BDC

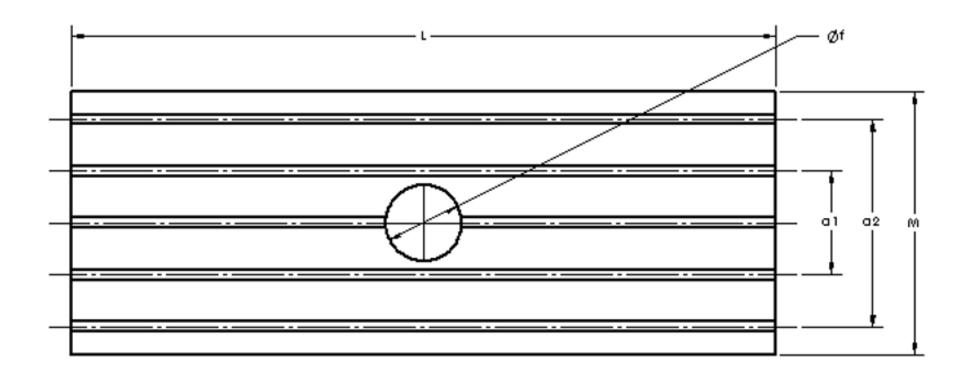
Figure 1.1.5 Azimuth AZ1 Assemblage

ITEM NO.	PART NUMBER	DESCRIPTION
1	69.3	ENCODER SPROCKET
2	260	ENCODER SPROCKET BRACKET
3	233.1	
4		CLUTCH TO SPROCKET SHAFT ELECTRIC MOTOR
	MTCP2-005-3BD18C	
5	250	ENCODER SPROCKET
6	124	MOTOR CLUTCH BELT
7	410.3	OIL INLET ID
8	200AS	CLUTCH
9	410.6	WETCLUTCH OIL ID
10	410.5	OIL OUTLET ID
11	AW4000-04	FRL
12	1311	OVERLOAD PROTECTOR
13	1312	GREASER
14	410.2	SIDE LOGO
15	410.8	GEARBOX OIL CHANGE ID
16	410.9	OVERLOAD OIL CHANGE ID
17	410.7	CLUTCH OIL CHANGE ID
18	1300-018	MANUAL OILER
19	410.1	WORMGEAR OIL CHANGE ID
20	1	FRAME
21	265AS	DUAL PALM ACTUATOR
22	410.1	FRONT LOGO
23	410.1	FRONT LOGO
24	510AS	SWIVEL ARM
25	502.1AS	SMARTPAC PRO HMI
26	023AS	RAM ASSEMBLY
27	400	ELECTRIC PANEL
28	69.3	SPROCKET COVER
29	69.1	WINTRISS STD RESOLVER
30	69	RESOLVER SUPPORT
31	251.1	ANGULAR POSITION INDICATOR
32	410.4	CADRAN
33	123 Rectangular Snip	ELECTRIC MOTOR PULLEY
34	813	ENGAGING GEAR
35	233AS	AIR CLUTCH CRANKSHAFT
36	810	FAIL SAFE AIR PISTON
37	327	FLY WHEEL GUARD

1.2 Specification **AZ2**


1.2.1 Press dimension AZ2


Figure 1.2.1 AZ2 Press Dimensions -cc RAM CENTER


1.2.2 Dimension of bolster and slide **AZ2**

1.2.3 Specification Table **AZ2**

Parameter		AZ2-120		AZ2-175		AZ2-220	
Туре		S	L	S	L	S	L
Nominal Capacit	У	12	20	17	75	22	20
Rated at thicknes	SS	0.1	.97	0.2	236	0.2	276
Slide Stroke	Α	4.331	7.087	5.118	7.874	5.906	9.843
SPM RANGE		40-70	35-60	40-70	35-55	30-60	24-40
MAX. Die Heigh	t	17.126	15.748	19.094	17.717	21.654	19.685
Height Adjustme	nt	3.543		3.937		4.331	
MIN. Die Height	0	13.583	12.205	15.157	13.780	17.323	15.354
Throat Depth	J	13.	750	15.300		16.875	
	С	20.500		22.875		25.500	
RAM	D	55.125		59.063		72.875	
	В						
	L	26.	750	29.875		33.000	
BED	М	74.	000	80.250		95.250	
	f						
Floor to Bed	Q	35	500	35.	500	39.3	375
	U	71.	654	81.8	890	93.3	307
Overall	Т	77.	559	84.0	646	100.	.394
	S						
Weight (lbs)	•	308	300	418	300	58300	

Parameter		AZ2-120		AZ2-175		AZ2-220		AZ2-275		AZ2-340		
Туре		S	L	S	L	S	L	S	L	S	L	
Nominal Capacit	У	12	20	17	75	22	20	27	75	340		
Rated at thicknes	SS	0.1	.97	0.2	236	0.2	276		0.2	276		
Slide Stroke	Α	4.331	7.087	5.118	7.874	5.906	9.843	6.693	11.024	6.693	11.024	
SPM RANGE		40-70	35-60	40-70	35-55	30-60	24-40	30-45	20-35	30-45	20-35	
MAX. Die Heigh	t	17.126	15.748	19.094	17.717	21.654	19.685	23.819	21.654	23.819	31.654	
Height Adjustme	nt	3.5	643	3.9	37	4.3	31		4.7	'24		
MIN. Die Height	0	13.583	12.205	15.157	13.780	17.323	15.354	19.094	16.929	19.094	16.929	
Throat Depth	J	13.	750	15.300		16.8	16.875		18.500		18.875	
	С	20.	500	22.875		25.	500	27		.500		
RAM	D	55.	125	59.063		72.8	875	82.6		625		
	В											
BED	L	26.	750	29.	29.875 33.000		000	36.250		37.000		
BED	М	74.0	000	80.	250	95.7	250	106	300	110	.250	
Floor to Bed	Q	35.500		35.	500	39.375		43.000				
	U	71.654		81.	890	93.	307		106	.299		
Overall	Т	77.	559	84.	646	100	.394		112	.205		
	S							164.567				
Weight (lbs)		308	300	418	300	583	58300 77000		79200			

Press capacity curve AZ2

The graph **Error! Reference source not found.** indicates the required air pressure, in PSI, in function of the upper d ie weight, in lbs. This ensures that there will be no clutch slippage due to low air pressure during the cycle.

The air pressure can be adjusted from the provided FRL by turning the valve knob.

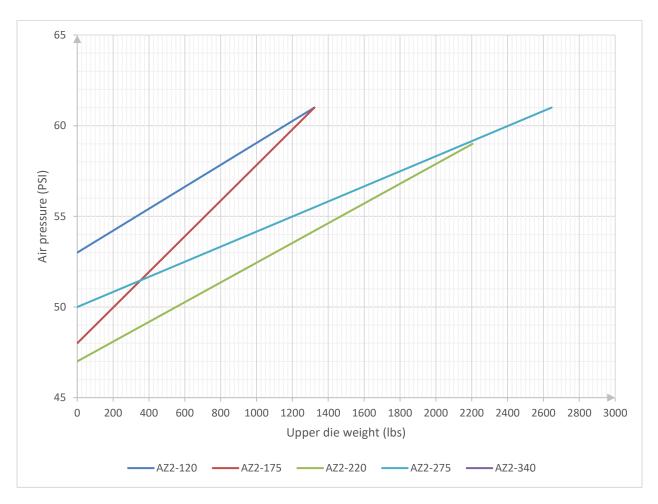
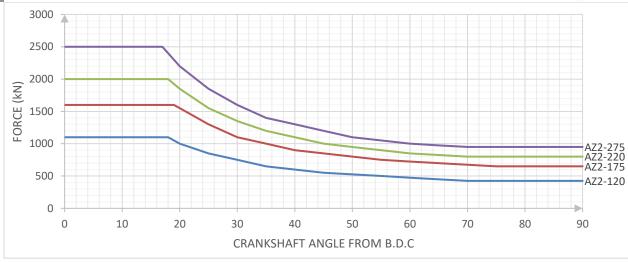
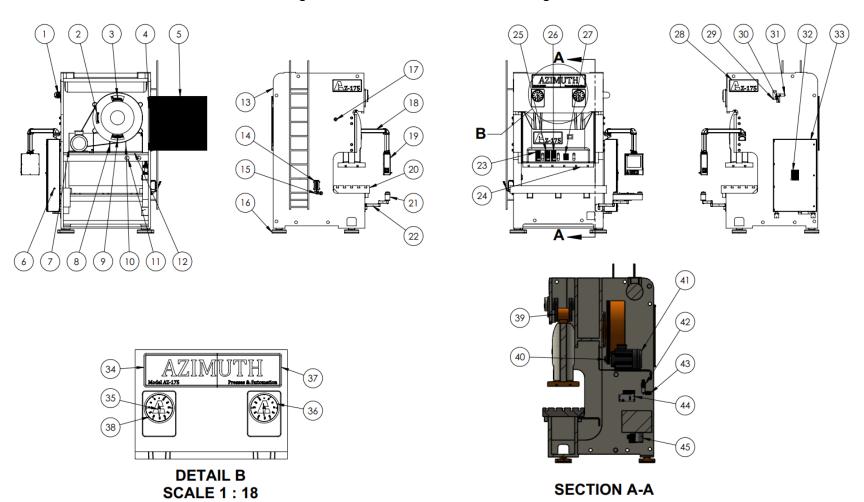
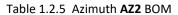


Figure 1.2.4 Counter balance air requirement

The graphs **Error! Reference source not found.** show the capacity of AZ2 presses, in kilonewtons, in function of the d istance from bottom dead center, in inches. This is useful to determine the pressing capacity for a given material thickness.




Figure 1.2.4 Capacity Curve (Models AZ2-120 to AZ2-275)



Press layout **AZ2**

Figure 1.2.5 Azimuth **AZ2** Assemblage

ITEM NO.	PART NUMBER	DESCRIPTION
1	069.3	ENCODER SPROCKET
2	410.2	WETCLUTCH IDENTIFICATION
3	410.2	CLUTCH IDENTIFICATION PANEL
4	327.1	DOOR HIGE
5	327.1	REAR MESH GUARD
6	508	BOUTON POUSSOIR
7	0010	ANGLE GUARD
8	0010	ANGLE GUARD
9	410.2	OIL OUTLET PANEL
10	0010	ANGLE GUARD
11	005.1	PRESSURE GAGE PLATE
12	0009	PLATE GUARD
13	1001	FRAME
14	1312	OILING PUMP
15	1312	OILING PUMP ACCESSORIES
16	060.1	FOOT
17	802	GEAROIL LEVEL
18	184AS	SWIVEL ARM-SMARTPAK HMI
19	502.1AS	SMARTPAC PRO HMI
20	1002	BOLSTER PLATE
21	550AS	DUAL PALM
22	183AS	SWIVEL ARM FOR DUAL PALMS
23	410.2	CHANGEMENT D'HUIL GEAR BOX
24	023AS	RAM SYSTEM
25	410.2	CHANGEMENT D'HUIL CLUTCH
26	410.2	CHANGEMENT D'HUILE OVERLOAD HYDRAULIQUE
27	410.2	CONVERSION TABLE
28	410.1	LOGO & MODEL
29	069.3	SPROCKET COVER
30	069	RESOLVER SUPPORT
31	069.1	WINTRISS STD RESOLVER
32	278	PANNEAU ELECTRIQUE
33	501.1AS	PRESS CONTROL
34	410.1	LOGO RIGHT
35	4001	AIGUILLE
36	410	CADRAN
37	410.1	LOGO LEFT
38	410	CADRAN
39	2001	CRANKSHAFT
40	123	PULLEY
41	069.4	MOTOR
42	1310-023	FRL
43	410.2	DRAIN WEEKLY
44	1311	OVERLOAD PROTECTOR
45	1312	GREASER

Safety instruction & Instrument Preparation

Safety precautions

Azimuth comply to safety regulation per table below:

Regulation	Description
UL 508A 3 Rd edition Issued date 2018- 4-24	Industrial control panel compliance
CSA C22.2 No14-18	Industrial control panel
CSA Z142	Safety for presses

Read this operation manual carefully before mounting, operating, maintaining and checking the press to ensure operators safety and press protection.

Never operate the press until fully understanding of the principles, safety conditions and all cautions for this press.

Never operate this machine before properly understanding the related press control installed on this press.

Start-up inspection

- A Before using the machine, make sure the shut height is properly adjusted to your tooling.
- ⚠ Make sure to verify proper motor voltage & secondary motor voltage prior any intervention on the machine.
- ⚠ Before using the machine with material, make sure to perform a visual inspection and try to cycle it 5 times to verify that nothing has been damaged during transport (guarding system, pitman enclosure, etc.)
- ⚠ Do not operate this machine until you've read & understood that this machine is dangerous. Placing your hands or any part of your body in this machine could result in the loss of fingers, limbs or even death.
- ⚠ Never operate this machine without the use of a guard or safety device that will always protect you from injuries.
- ⚠ Never work on this machine unless power is turned off and locked out.
- $oldsymbol{\Lambda}$ Never place your hands in the machine unless the E-Stop is pressed

7 1 1 1		
No.	Inspection	Inspection items
1	-(()-	Check the clutch and brake performance in INCH mode
2	Company (1)	Check bolts and screws of crankshaft, flywheel, slide, connection rod, light curtain for security
3		In SINGLE mode, depress RUN button to stop slide at TDC.
4		E-STOP button is depressed, slide should stop immediately. Verify stopping time according to press control Installed.
5		Check light curtain performance, whether slide stops immediately

	Operators must (a). wear a safety helmet; (b). wear the safety shoes; (c). wear the earplug; (d). with short hair;
	Never modify or remove the control circuit or the safety device to ensure operator's safety, otherwise AZIMUTH disclaims any liability or responsibility.
V cc	Completely perform the periodic inspection in accordance with this operation manual
XXX证书 XX XX	Inspection, adjusting and maintenance of electrical circuits must be performed by qualified electricians with specific certificate.

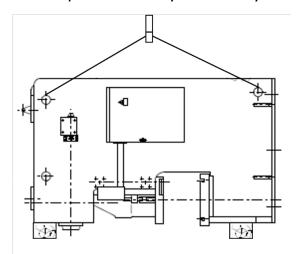
Zo o o o o o o o o o o o o o o o o o o	Ensure the press is used within the nominal capacity.
	Read this operation procedure and confirm the switches and buttons (see D OPERATION section)

3. Transport and Installation

This section represents proper anchor points & installation for rigging services.

Acceptance inspection

Check the press for any damage and the accessories in accordance with PACKING LIST, and contact AZIMUTH for confirmation with any problems.

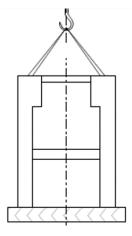

Carrying

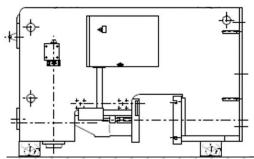
Consider the crane capacity and wire cable capacity for the big and heavy press, especially pay attention to the extended part.

Lifting cautions: check wire cable surface, never lifting in 90°; cover the machine corners with cloth for protection during lifting; never use chains for lifting; the machine only allowed to be pulled but not pushed; keep safety distance during lifting.

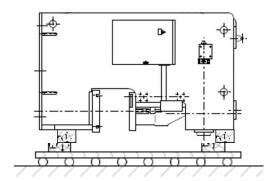
Lifting procedures:

- (1). Cross the proper wire cables as per machine weight and set the wire cable on the sling bolts and hooks.
- (2). Set the hook on the proper position, and lift and adjust the machine slowly and properly to keep the machine balance.
- (3). Lift the press carefully and slowly to ensure safety.




Figure 3.2.3 Lifting procedures

(1) For the air lines at the two sides, so lay down the press as shown below: lay it down at the front side and inserted with wood blocks to protect the external press.


Figiure 3.2.4 lay machine down at the front side

Note: The length of underlay wood blocks must longer than the width of press.

(2) If the machine is higher than workshop door or crank is not available, upside down the machine and move it with round rolling bars for short distance movement, and pay much attention to the safety.

Figure 3.2.4 Move machine with round rolling

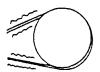
Note: The wood blocks must be able to support the press weight.

Put the press in a dry place for 3-5 days to dry the motor and electrical components. And check insulation with instrument if necessary.

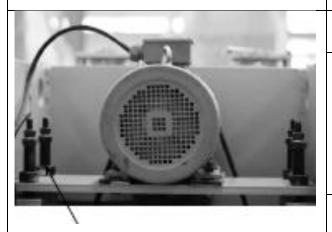
Installation of frame and bolster

The press has been coated rust proof oil before transportation, consequently clean it before installation.
Foundation installation: Lay the press onto the foundation and level the press bolster (see 4.2). After leveling, fix the anchor screws, fill in concrete (cement to sand: 1:3) into the square holes, only operate the press when concrete is completely dried.
Buffer installation: First install the buffer underneath the press, and lay press on ground to check the bolster levelness with level gauge. Adjusting as shown.

First completely clean the bolster and check whether it locked tight or not. Cross lay the level gauge in the middle of bolster in the portrait direction of press (as shown), the reading must	
not beyond 0.2/1000mm.	
If there are differences, insert pads under frame feet to level front to back and left to right. If it with buffer, just adjust the screw of buffer to level it.	


Note: Pads should at least as big as press feet to support the weight. Check the level after first month use and check it every half year.

Main motor installation



Try to install main motor on the frame during transportation. IF is it must be disassembled, the re-installation procedures are as following:

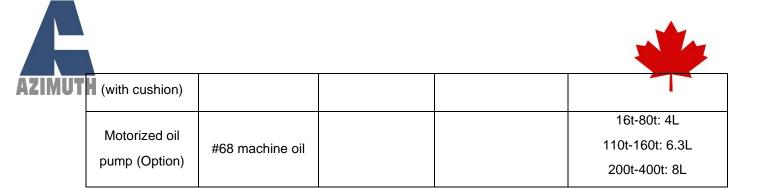
Clean motor, motor wheel, motor mounted plate, flywheel groove.

Clean the V belt with cloth, not solution.

Check main motor

Move the motor to the installation position, do not lock tight firstly, and support the motor weight with hanger.

Measure the center line of motor wheel and flywheel groove and move the motor to be centered and fasten motor with bolt at last. If motor wheel and flywheel are not centered properly, it will accelerate wear of V belt groove and motor bearing. (as shown)



Note: Do not mount V belt onto motor wheel tightly. The proper tension is to depress the V belt down 16mm/m. If not, loose and turn the four lock bolts to raise motor base and finally fasten the lock bolts after adjusting.

Parts		Kind of lubrifiant		Oil quantity	required
				25t	10L
				45t	17L
				63t/80t	24L
	#320 gear oil	Gear 632	OMALA 320	110t	27L
Oil reservoir for	(SINOPEC)	(MOBIL)	(SHELL)	125t	28L
drive gear	(SINOI LO)	(IVIOBIL)	(OFFICE)	160t	65L
				200t	70L
				250/315t	205L
				400t	230L
Oil reservoir for slide ball base	#46 anti wear hydraulic oil	DTE25	TELLUS 46	0.8L	
Thread of connection rod	(SINOPEC)	(MOBIL)	(SHELL)	0.2L	
Oil reservoir for				16t-125t	2.5L
hydraulic				160t-315t	5L
overload	#32 anti wear	DTE24	TELLUS 32		
protector	hydraulic oil	(MOBIL)	(SHELL)		
(Rigid overload	(SINOPEC)	(WOBIL)	(Oriele)	400t	8L
protector: no oil					
reservoir)					
	ATF (automatic	ATF220	DEXON III	01	
Wet clutch	transmission fluid) (SINOPEC)	(MOBIL)	(SHELL)	6L	
Motorized	#0 extreme			2L	
grease pump	compressed lithium base	MOBILUX EPO	ALVANIA EPO		
Manual grease pump	grease (SINOPEC)	(MOBIL)	(SHELL)	0.6L	

Clean the internal pipe lines with air hose first and then connect the air inlet to the air line joint of the rear side press. (Joint with Rc1/2 thread and connected as shown.) Required air pressure is 0.55MPa. Air inlet: Rc1/2 joint.

Installation & START-UP Functional diagram

- 1. Air- Filter
- 2. Regulator (80-85 PSI)
- 3. Air lubrificator
- 4. Air tank (if necessary)
- 5. Electrical dual valve
- 6. Rotary union
- 7. Air clutch & brake Flywheel of the press

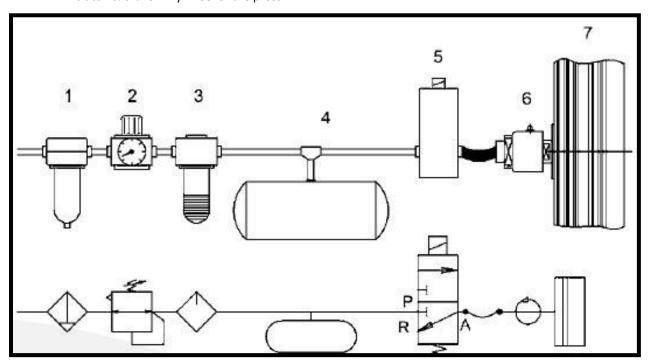
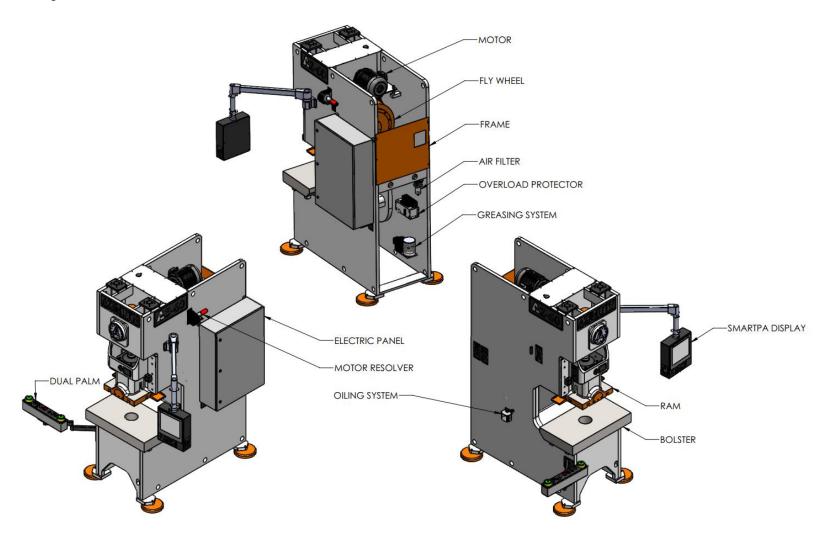


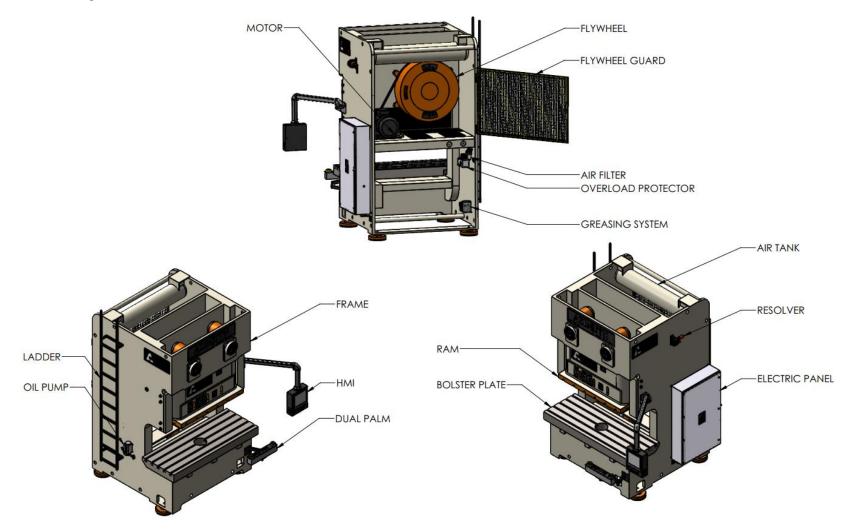
Figure 3.5.3 Air flow

- 1. Check lubrication oil quantity of gear box
- 2. Check lubrication oil quantity of slide ball base
- 3. Check oil quantity of every oil tank for lubrication pump
- 4. Check oil quantity of oil tank for hydraulic overload pump

ENNE CALLED BATE ATTENT	Check air pressure of air inlet, clutch and balance cylinder
	Check no air leakage of every piping
	3. Check no dirt of water separating air filter


 Depress E STOP button to check itself locked or not and check slide stops immediately or not

Main components and Function (AZ1 & AZ2)

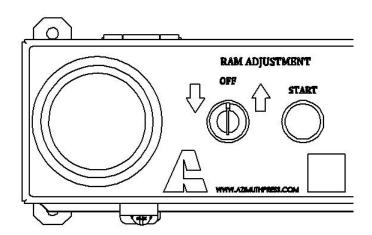

Main components – AZ1

Main components – AZ2

Maintenance

This sections covers the maintenance procedure for this press. See section

Mechanical Set-up


This section covers the mechanical set-up of the AZ1 press. Please make sure to fully understand these instructions before attempting to make mechanical adjustments to the machine.

Adjusting the Shut Height

The shut height can be adjusted using the operator station on AZ1-2 presses.

To adjust it, the "RAM ADJUSTMENT" key must be turned to either up or down. Pressing the START button will move the ram up or down depending on the position of the key switch.

The shut height cannot be adjusted while operating the press.

Ram and Gibs Maintenance

For the press to function correctly and to ensure longevity, the ram and gibs must be periodically inspected, cleaned and adjusted.

Cleaning the Ram Contact Surfaces

To avoid premature wear of the contact surfaces, always make sure there is no dust or debris stuck on the sliding surfaces.

Check for excessive dust or abrasive particles such as metal chips. These particles will scratch and damage the ram and gibs with time.

It is recommended to always wipe down the sliding surfaces before running the machine. Always use towels to clean the press.

Remove excessive grease & verify no dust or particles are present in the grease.

Do not use a compressed air jet to clean the ram and gibs; it will force debris between the ram and the gibs.

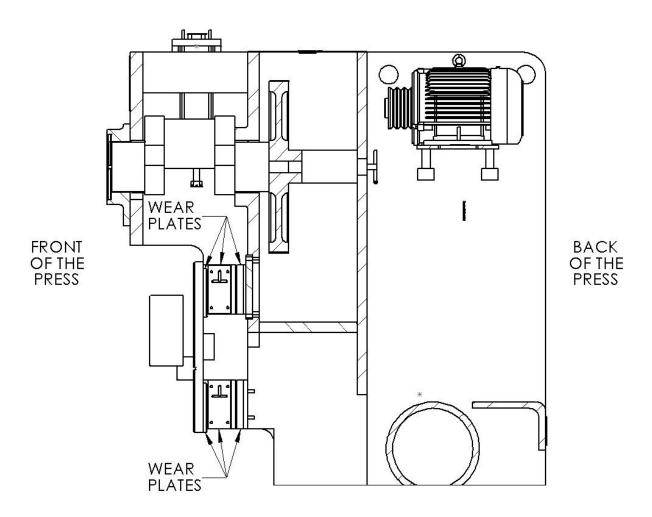
Periodically check the clearance between the gibs and the ram to make sure it stays within specification. The clearance can be checked using feeler gauges. Refer to the table **Error! Reference source not found.** to check what is the specification for each press model.

Table 6.1.2.2 Specified Gibs Clearance AZ1

Press Model	Specified Clearance Between Gibs & Ram (inches)	
AZ-60	0.003	
AZ-80	0.003	
AZ-100	0.005	
AZ-125	0.005	
AZ-175	0.005	
AZ-200	0.005	
AZ-250	0.005	
AZ-315	0.0075	

Table 6.1.2.2 Specified Gibs Clearance AZ2

Press Model	Specified Clearance Between Gibs & Ram (inches)	
AZ2-120	.005	
AZ2-175	.006	
AZ2-220	.006	
AZ2-275	.006	
AZ2-340	.008	

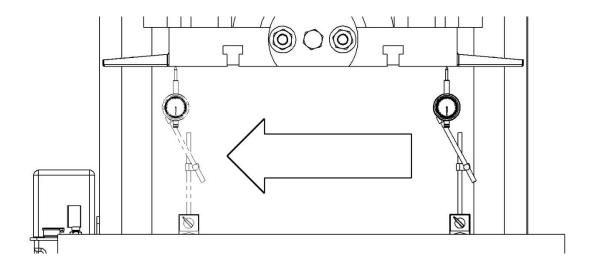

Adjusting Gibs Clearance

If the clearance between the gibs and the ram is out of specification, it means the wear plates have worn out and must either be shimmed or replaced.

To adjust the gibs clearance, the gibs must first be removed. This gives access to the wear plates. These plates can then be shimmed by the correct amount to get the clearance back in specification.

The gibs can then be put back on and the bolts, tightened.

Checking Ram and Bed Parallelism

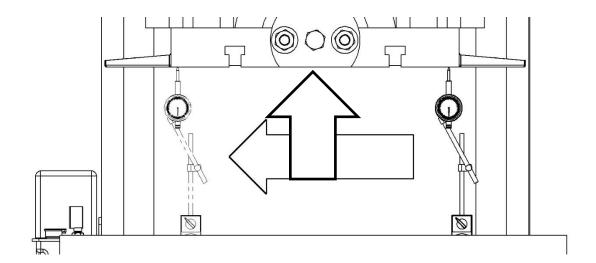


Parallelism between the ram and the bed of the press is critical for the press to function properly. To verify it is within specification, a dial gauge and a magnetic base are required.

To check the parallelism, mount the dial gauge on the bed of the press. Put the dial gauge pin against the ram and slide the magnetic base on the bed, going from one end of the press to the other, as shown in **Error! Reference source not found.**

The variation between the lowest point and highest point must not exceed the specification of 0.001in/ft.

If the parallelism is out of specification, contact Azimuth Machinery.


Checking Main bushing clearance & ball-screw clearance

Main bushing clearance & ball-screw clearance is an important point to verify every year of operation.

Using a bottle jack of approximately 20T, place it under the bed.

Measure total clearance & take notes.

It is important to make sure the drive belts are properly tensioned. The belt tension can be adjusted with the four bolts that hold the motor plate behind the press. Make sure to turn the four bolts evenly.

Failure to do so may misalign the motor pulley and flywheel, causing the belt to wear prematurely.

The correct tension is achieved when the belt can only be depressed 0.2 in/ft (16 mm/m)

The purpose of the four smaller bolts is to lock the bigger bolts. Therefore, make sure to loosen them before adjusting tension and to tighten them when done.

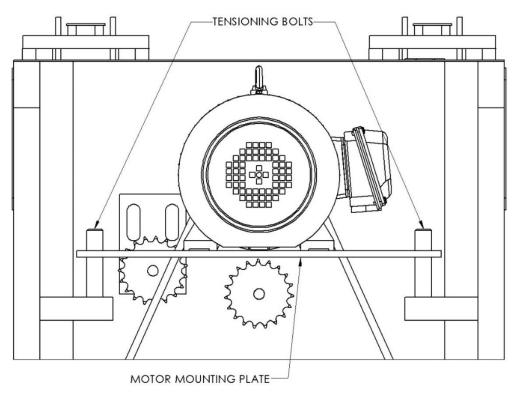
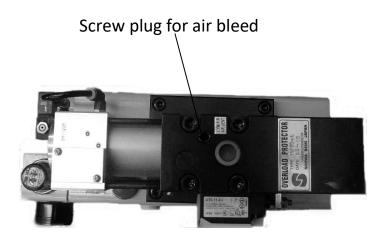


Figure 6.1.3 Belt Tensioning

Hydraulic Overload protection (HOLP)

This press is equipped with an hydraulic overload protection device. The hydraulic overload device is adjusted to approximately 125% of the total press capacity.


This device prevents any overload of the press from bad set-up of the operator, parts stacking, overtonnage, etc.

This hydraulic overload pump operates with Air-applied to it. When air is properly applied, the system will automatically bleed by itself to pressure the hydraulic units inside the RAM.

In order to verify the proper functioning, verify these points:

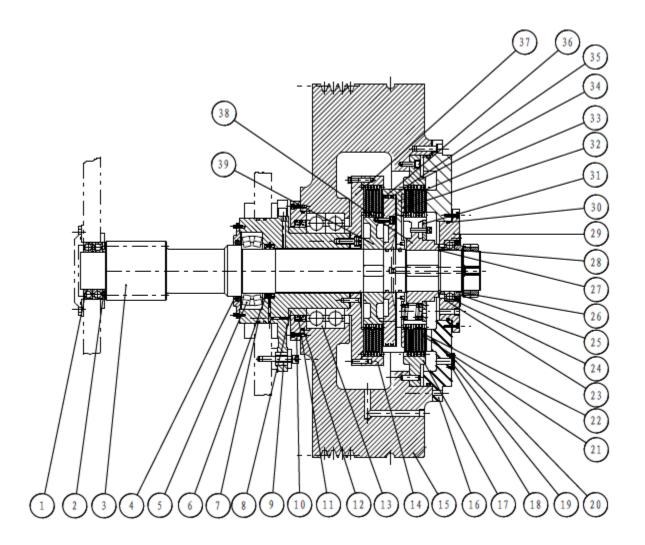
- 1. Verify Oil inlet is properly closed.
- 2. Oil level shouldn't be at more than half when pump is pressurised
- 3. Open Screw plug for air bleed. The pump should start functioning & should give an alarm to the press control.
- 4. Close the vent & the pump should pressurise & stop functioning.

Adjusting the hydraulic overload

In a rare case of bad hydraulic overload adjustment, you can readjust maximum pressure at which the hydraulic overload will trigger an alarm by tightening the screw highlighted in red below.

Only a certify technician or maintenance operator should adjust the hydraulic overload.

- 1. Do not attempt adjusting hydraulic overload without a certified technician. This can result in severe damage to the machine.
- 2. Rotating the screw clockwise will increase value of the actual overload of the machine.
- 3. Rotating the screw counter clockwise will reduce value of the actual overload of the machine.



The press adopts combined wet multi-discs pneumatic friction clutch brake which are mechanical interlocked. 6 friction pads of clutch and 6 friction pads of brake are enclosed with oil groove of flywheel.

An oil firm among friction pads and dual discs transmits the torque with small wear of friction pads and lower engaged noise. When dual solenoid valve is powered on, compressed air inlets and then pushes the clutch friction pads move right to transmit flywheel energy to gear shaft.

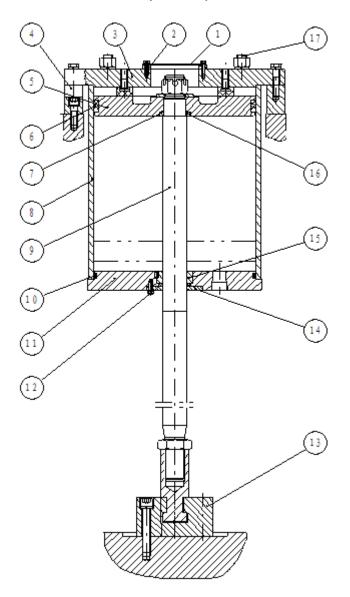
When dual solenoid valve is powered off, compressed air gets out and cylinder move left under spring force to fasten brake friction pads to stop gear shaft and slide immediately. Construction is as following:

Figure 7.4.3 Clutch Assemblage

Table 7.4.3 Clutch BOM

Item	Description	Item	Description	Item	Description
1	Bearing	2	Sleeve	3	Gear shaft
4	Left cover of quill	5	Bearing	6	Skeleton seal
7	O ring	8	Sleeve	9	Guide sleeve of quill
10	Left cover of flywheel	11	Skeleton seal	12	O ring
13	Bearing	14	Plate	15	Flywheel
16	End cap	17	Flywheel internal gear ring	18	Oil leveler cover
19	Oil sight plate	20	O ring	21	Friction pads
22	Spacer	23	Bearing	24	Skeleton seal
25	Bearing cover	26	O ring	27	Retainer
28	Sleeve	29	Bearing base	30	O ring
31	Spring plate	32	Cylinder internal gear ring	33	Cylinder body
34	Flywheel internal gear ring	35	Star ring	36	Piston
37	Brake disc	38	Brake gear	39	Clutch gear

Balance cylinder



Two counterbalance cylinders are hung on the top frame. The piston rod connects with left and right walls of slide to balance slide and upper die weight for slide performance accuracy.

Verify section Counter balance Settings for more details.

Cylinder body with thin wall is an upside mounting construction. Once press geometric accuracy is adjusted and slide is deviated, to compensate by clearance of block which connected with slide with balance cylinder piston rod.

Construction is as following:

Item	Description	Item	Description	Item	Description
1	Cover plate	2	Washer	3	Cylinder cover
4	Block	5	Piston	6	Y ring
7	O ring	8	Cylinder body	9	Piston rod
10	O ring	11	Cylinder bottom	12	Y ring
13	Hanger	14	Cover	15	Internal bush
16	Seal washer	17	Tie rod		

Seals of counter balance:

Item	Description	Press model	Specification	
		AZ2-80	Y seal ring\230x250x12	1
		AZ2-110	Y seal ring240×280	1
6	Y seal ring	AZ2-160	Yx seal ring D320\JB/ZQ4264-1997	1
		AZ2-200	Yx seal ring D400\JB/ZQ4264-1997	1
		AZ2-250	Yx seal ring D450\JB/ZQ4264-1997	1
		AZ2-80	O ring 36.5×3.55\DICHTOMATIK	1
		AZ2-110	O ring45×3.5\ EK	1
7	O ring	AZ2-160	O ring50×3.55\ EK	1
		AZ2-200	O ring55×4\ EK	1
		AZ2-250	O ring58×4\DICHTOMATIK	1
		AZ2-80	O ring236×7\GB1235-76	1
10		O ring270×5\DICHTOMATIK	1	
10		AZ2-160	O ring310×5\ EK	1
		AZ2-200	O ring386×6\ EK	1

		AZ2-250	O ring440×4\DICHTOMATIK	1		
	12 Y seal ring	AZ2-80	Y seal ring\45×56×7			
		AZ2-110 Y seal ring	Y seal ring\50×60×6	1		
12			Y seal ring	Y seal ring	AZ2-160	Y seal ring\55×65×6
		AZ2-200	Y seal ring\60×71×7	1		
		AZ2-250	Y seal ring\65×75×6	1		

Here's the procedure on how to change oil for each oiling point on the AZ model. It is important to follow the change frequency in order to have a good oil quality. The table 1 shows the type of oil to use on the press.

Location	Type of oil	Change frequency
1. Main gearbox	Hydraulic oil 68	Every year
2. Counter balance oil	Hydraulic oil 68	Fill oil reservoir when Empty
3. Hydraulic Overload	Hydraulic oil 32 (clear)	Every 6 months
4. Screw adjustment & ball-screw	Hydraulic oil 68	Monthly
5. Wet-Clutch	Hydraulic oil 32 (red)	Every year

The main gearbox is immersed in the oil bath. **Change the oil every year** of operation. Here's the procedure on how to change the oil bath of the main gear-box.

1. Drain the oil by accessing the drain valve at the bottom of the tank. Drain until there is no more oil inside the tank.

2. Remove the top plate to access the main gear-box & verify the gear state. Using air, clean inside the gear box by making sure no dirt is inserted inside the gear box.

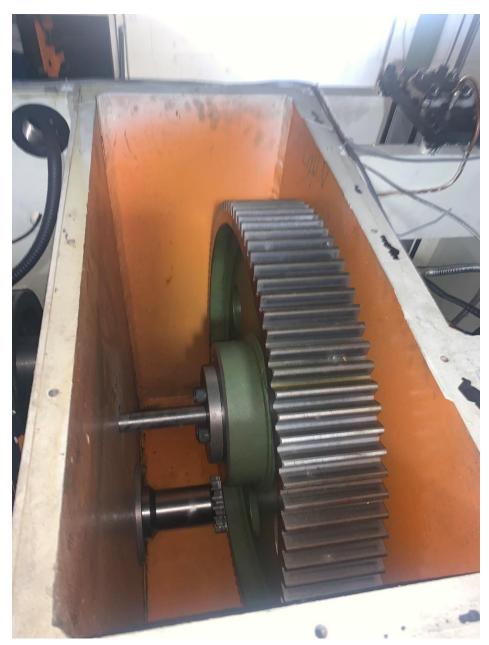
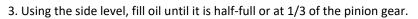
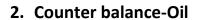
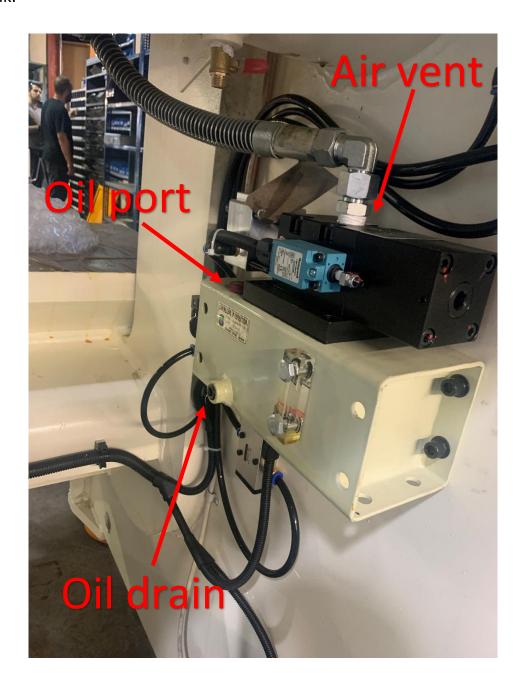



FIGURE 7.4.9.1 MAIN GEARBOX



The counterbalance oiling pump is used to oil the main seal inside the counter balance air-cylinder.

Using the proper oil, fill-in the oil accordingly every.



3. Hydraulic overload

The hydraulic overload pump is a very important components that prevent mechanical failure on the machine when overloading it.

1. Loose open the drain screw to drain the oil tank. Drain all the oil inside the tank.

- 2. Open the air vent. The pump will start & drain the remaining oil inside the tank & hose to the RAM.
- 3. Tighten the oil drain screw back & remove the oil port plug.
- 4. With the air-vent open fill-in the oil until it is ¾ full.
- 5. Tighten the air-vent back. The pump will by itself stop pumping.
- 6. Make a clearance check before operation.

4. Screw adjustment & ball-screw

The motorized screw adjustment is driven by a worm gear within the RAM assembly.

- 1. Remove the oil port screw.
- 2. Remove the oil drain screw & drain the oil bath.
- 3. Replace with proper oil.

FIGURE 7.4.9.4 ADJUSTMENT SCREW OIL PORT INLET

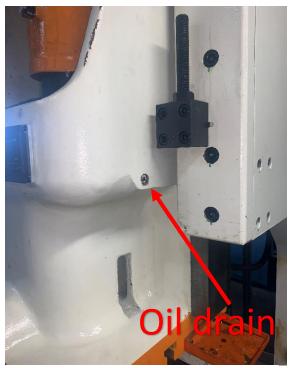
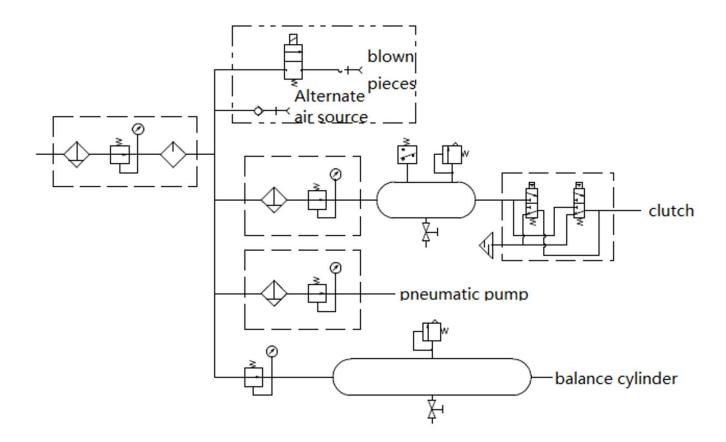


FIGURE 7.4.9.4 ADJUSTMENT SCREW OIL PORT OUTLET



5. Wet-clutch

The wet-clutch is located at the back of the machine. It is important to change the oil every year in order to have a proper torque to the clutch &


- 1. Place the flywheel in a horizontal position so the oil level is on the right
- 2. Remove the drain screw to drain the oil bath within the wet-clutch
- 3. Tighten the drain screw back & rotate the flywheel approximately 30 degrees to access the oil port.
- 4. Fill-in the clutch oil until the oil level is a the middle when the oil level is on the right side.

Drain^IScrew

Operating the Press

This section explains how to operate the press. Please make sure to understand these instructions before operating the press.

Using the Operator Station

The station allows the operator to control the press.

- The DUAL PALMS start the motion of the press and must be pressed simultaneously.
- The RAM ADJUSTMENT switch puts the press in shut height adjustment mode.
- The START button activates the ram adjustment motor. See section **Error! R eference source not found.** for the shut height adjustment procedure.
- The LIGHT button turns on the light of the press.
- The EMERGENCY STOP button stops the press in case of an emergency, and should only be used accordingly.
- The TOP STOP button stops the press when the ram is at top dead center.
- The PRIOR ACT button allows the press to be started in continuous automatic mode.
- The MICRO-INCH switch is optional. It allows micro-movements which are programmable in the controller.

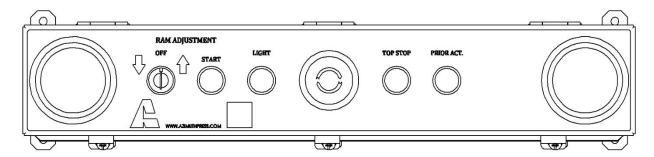


Figure 6.2.1 Operator Station

This section explains how to use the different auxiliary and optional equipment on the press.

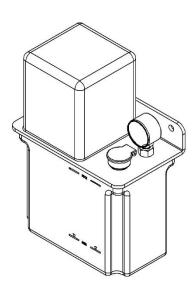
Automatic Oiling System

Azimuth presses are equipped with an automatic centralized lubrication system for main bearing, bushing & gibs. The table below gives the important information relative to the oiling system.

Table 6.2.3.1 Automatic Oiling System Specifications and Default Settings

Idling time 800 minutes	
Running time	5 seconds at start-up and after idling time
Oil type	Shell Tellus S2 M68 or equivalent

To change the oiling parameters:


- Press & hold the Set key;
 - o Running time will appear, in seconds;
 - Change with the arrow if needed;
- Press & hold the Set key;
 - o Idle time will appear, in minutes;
 - o Change with the arrow, if needed.

To run the oiling system manually, press the Set key once.

6.2.3.1 Automatic Oiling System

6.2.3.2 Automatic Greasing System

Automatic centralized greasing system

Azimuth presses are equipped with an automatic greasing system. This system triggers with the press's controller.

Grease levels must be routinely checked by the operator, and it must be refilled and bled when the grease level is too low. The press control will notify the operator with an error when it is the case.

To fill the Automatic Greasing System, remove the fill plug, then pump grease into the system until the reservoir is full. Put the fill plug back on.

Note that there is air in the reservoir after this procedure, which will interfere with the operation of the grease pump.

<u>Unlike the Automatic Oiling System, the Automatic Greasing System will not</u>
<u>function properly if air is present in the pump. It is therefore important to</u>
<u>follow the bleeding procedure Error!</u> Reference source not found..

Bleeding the Automatic Greasing System

To bleed the Automatic Greasing System once it is freshly refilled, first start it using the press controller. With a wrench, loosen the bleed screw until grease comes out. Wait until air has completely escaped the system, then tighten the bleed screw.

The greasing cycle works based on 3 main parameters:

Number of cycles : This is the amount of cycle counted by the grease sensor on the top of

the press & greasing manifold.

Max allowable seconds per cycle: This is the maximum amount of time allowed to the grease cycle. IN other words, the grease sensor must turn on or OFF within 9 seconds.

Hours before cycling : Idling time before operating.

TABLE 6.2.3.2.1 GREASING CYCLE PARAMETERS

Number of cycles	Programmable from press control interface	
Max allowable seconds per cycle 15 secondes		
Hours before cycling	40h – Programmable from press control interface	
Fault related to greasing cycle	2 flashes from fault indicator	

Please refer to the below video to understand how the block divider valve.

(32) Intecs SKF Lincoln Quicklub Progressive Lubrication System - YouTube



Azimuth presses which are equipped with light curtains have a three-position key switch on the electrical panel which allow blanking or no blanking options.

Blanking allows for a small object to be introduced inside the light curtain without triggering the light curtain to stop the press.

Never position the key switch in the middle position – it will cause the light curtains to cease functioning properly and with it the press as well.

Make sure to power on and off the press again for changes to take place when switching between blanking and non-blanking.

76

TROUBLESHOOTING

This section covers the troubleshooting section for mechanical issues. Please always refer to press control for any troubleshooting regarding controls of the press.

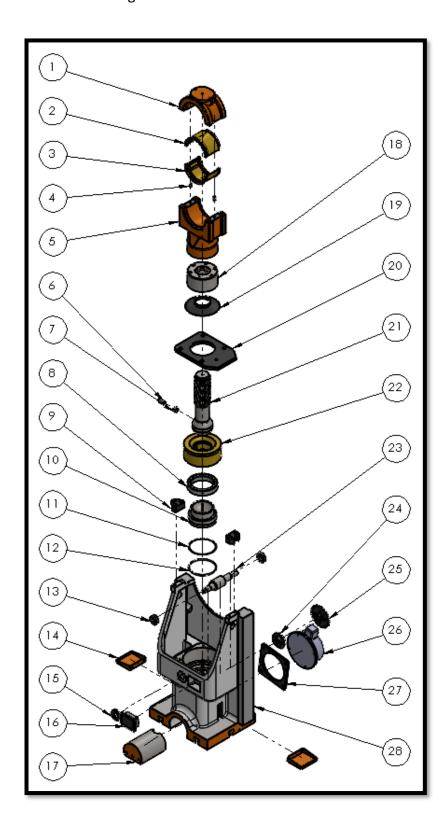
The overload from motor adjustment is an electric protection from overheating the main motor for the adjustment of the press. Here's a few reasons why the adjustment's motor could overload while trying to set up your tooling

TABLE 8.3 RESPONDING TO AN OVERLOAD FROM MOTOR ADJUSTMENT

Possible problems	Solution
Bad air-counter balance	Verify the air going to the counter balance.
	Make sure the counter balances air-pressure is
	properly set. Make sure there is no leak from
	the balance.
Improper parallelism	Loosen up the lower bolts from your tooling
between the RAM'S	(lower shoe) making sure there is restriction on
assembly & the upper	the die-set's bushings & the sliding part of the
shoe. Problem with main	RAM. Try to adjust again. If the RAM is moving,
bushings from die-set	something's wrong with the tooling. Verify your
	tooling.
	Remove tooling from your press. Try adjusting
	the RAM without any tooling in it. If the RAM'S
	moves properly, verify your tooling. If not, go to
	next possible problems.
Bad adjustment motor	Unmount the adjustment motor from the back
	of the RAM assembly. With a metric wrench,
	try to adjustment the press manually (from the
	main gear), see drawing RAM ASSEMBLY. The
	worm gear should be rotating freely. If you feel
	any restriction, do not operate & contact
	Technical Support.
Too many consequent	Hydraulic overload can affect press clearance.
hydraulic overload	When overloading the press, make sure to
	verify main clearance before operating the
	machine again.

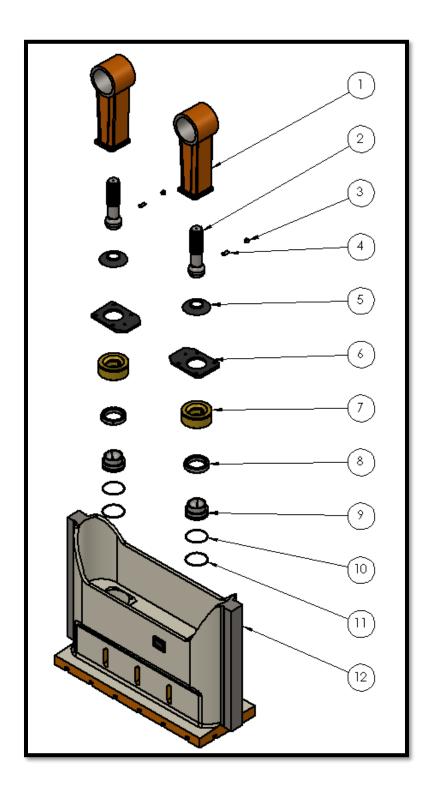
Motor chain is too tight	Make sure the CHAIN from the motor
	adjustment is loose, not tight.

Annexe A - PARTS



7.2.7.2RAM'S ASSEMBLY AZ1 models*

Figure 7.2.7.2 Azimuth AZ1 RAM



Provide press model number before ordering spart parts

ITEM NO.	PART NUMBER	DESCRIPTION	QTY.
1	29.1	PITMAN TOP BLOCK	1
2	136.1	BRONZE TOP BUSHING FOR PITMAN	1
3	136.2	BRONZE BOTTOM BUSHING FOR PITMAN	1
4	91595A737	POSITIONNING PIN FOR PITMAN	2
5	29.2	PITMAN MAIN BLOCK	1
6	157	KEY FOR BALLSCREW	1
7	157.1	RING FOR PITMAN KEY	1
8	23.3	BALL SEAT RETAINER	1
9	851	PISTON LINK TO RAM	2
10	25	BALL SEAT	1
11	23.1	RAM BALL SEAT RING	1
12	23.2	RAM BALL SEAT O-RING	1
13	6680K17	Angular-Contact Ball Bearing	2
14	807	GREASE TRAY	2
15	802	ram oil sight	1
16	403	SHUT HEIGHT INDICATOR	1
17	24	CLAMP BLOCK FOR RAM	1
18	28	CLAMP BLOCK	1
19	23.4	PITMAN GASKET	1
20	200.17	PITMAN RETAINING PLATE	1
21	27	BALL SCREW PITMAN	1
22	26	PITMAN CUP ADJUSTMENT GEAR	1
23	177	WORM-GEAR SHAFT	1
24	845	SPUR GEAR SEAL	1
25	250.1	ENCODER SPROCKET FOR AZ60	1
26	126	ELECTRIC MOTOR FOR 60T RAM	1
27	69	MOTOR BRACKET	1
28	23	AZ60 RAM FRAME	1

ITEM NO.	PART NUMBER	DESCRIPTION	QTY.
TILIVI INC.			
1	029	PITMAN BLOCK	2
2	027	BALL SCREW PITMAN	2
3	157.1	RING FOR PITMAN KEY	2
4	157	KEY FOR BALLSCREW	2
5	023.4	PITMAN GASKET	2
6	200.17	PITMAN RETAINING PLATE	2
7	026	PITMAN CUP ADJUSTMENT GEAR	2
8	023.3	BALL SEAT RETAINER	2
9	025	BALL SEAT	2
10	023.1	RAM BALL SEAT RING	2
11	023.2	RAM BALL SEAT O-RING	2
12	023	RAM FRAME	1

This section covers the maintenance notes.

Description	Section (CTL + CLICK BELOW)	Date of	Notes from Maintenance
		inspection	
Verify press parallelism	Checking Ram and Bed		
	Parallelism Checking Ram and		
	Bed Parallelism		
Verify press overall	Checking Main bushing		
clearance	clearance & ball-screw		
	clearance		
Verify motor belts	Adjusting Belt Tension		
Verify hydraulic overload	Hydraulic Overload protection		
pumpHydraulic Overload	(HOLP)		
protection (HOLP)			
Changing oil	Changing oil		

1 - FRONT LEFT CORNER	0.000''
2 – FRONT RIGHT CORNER	
3 – LEFT BACK CORNER	
4 – RIGHT BACK CORNER	

O	NO APPARENT SCRATCH ON RAM'S AFTER 2	2,000 STROKES	
0	RAM RANGE IS WITHIN SPECS (see specs)		
0	RAM ADJUSTMENT IS DONE EASILY WITHIN RANGE (BALL-SCREW & PITMAN THREADS)		
MAIN BUSI	HINGS & OVERALL CLEARANC	Ε	
0	NO APPARENT SCRATCH OR HEATING WHIL	E RUNNING	
Overall Clearar	nce		
VERIFIED BY	Υ		

AIR-CLUTCH & BRAKE

0	INTERNAL SEAL NOT DAMAGED (NO APPARENT LEAK)
0	AIR-CUTCH PRESSURE SET AT 85PSI
0	VERIFIED BRAKE LININGS IS LOOSE WHEN CLUTCH IS ENGAGED (Dry friction clutch ONLY)
0	VERIFIED CLUTCH LININGS IS LOOSE WHEN BRAKE IS ENGAGED (Dry friction clutch ONLY)

Machine tested under load in continuous (@ minimum 500 strokes)

TABLE 7.2.7.4 HYDRAULIC OVERLOAD SETTING VALUE & MACHINE LOAD TESTING

Machine tested under load	METRIC TONS
Number of cycles	5000 strokes
HYDRAULIC OVERLOAD PROTECTION ADJUSTMENT	tons

Do not attempt adjusting hydraulic overload without a certified technician. This can result in severe damage to the machine.

Rotating the screw clockwise will increase value of the actual overload of the machine.

Rotating the screw counter clockwise will reduce value of the actual overload of the machine.

Figure 7.2.7.4 Hydraulic overload protector

VERIFIED BY

OILING SYSTEM for counter balance*

	0	Oiling system fittings do not leak
	0	Oiling system works at power-up
	Idling time (min)	
	Oiling cycle (sec)	
RIFIED	BY	

PRESS OVERALL GUARDING

0	GUARDING NOT RUBBING AGAINT MAIN COMPONENTS
0	GUARDING IS PROPERLY INSTALLED
0	Guarding meets CSA safety distance
/ERIFIED BY	
Bolster plate	
O Confirm no parts on the bolster surface; screws of bolster already be	
fastened	
O Planeness tolerance is within allowance	
Die height adjustment (motorized)	
O check wiring of die adjusting motor	
O confirm enough lubrication for worm and worm gear	
O check die height indicator function	
O Moto	or not forcing or "buzzing" while doing adjustment
Main motor (drive
O Check motor shaft and belt wheel with no loose, crack, wear or	
defo	rmation

H Customer Service

Warranty plan on part-revolution presses model 6-AC TO 44-AC, AZ1 MODELS, AZ2 MODELS, AZ-S1 MODELS, AZ-S2 MODELS

Warranty plan on part-revolution presses model 6-AC TO 44-AC, AZ1 MODELS, AZ2 MODELS, AZ-S1 MODELS, AZ-S2 MODELS.

Years on air-clutch & electrical components

3

Azimuth machinery warrants to the original purchaser, to repair or, at AZIMUTH MACHINERY'S sole option, replace any major frame, crown, bed, upright or slide (machine casting or weldment), Air-clutch, seals & ALL Electrical components (greaser, oiler, motor, main controller, press encoder) after examination by AZIMUTH MACHINERY's properly authorized representative, to be defective in material or workmanship under normal use within three years or, if sooner, 6,000 hours of running time after the original date of shipment from the AZIMUTH MACHINERY plant.

<u>Does not include labor¹ or diagnostic work. The original purchaser will be responsible</u> for travel costs and expenses.

Years mechanical parts warranty

2

Azimuth machinery warrants to the original purchaser, to repair or, at AZIMUTH MACHINERY'S sole option, replace any parts that are found defective(Ballscrew, pitman(s),crankshaft(s), slide, GIBS, RAM) after examination by AZIMUTH MACHINERY's properly authorized representative, to be defective in material or workmanship under normal use within three years or, if sooner, 4,000 hours of running time after the original date of shipment from the AZIMUTH MACHINERY plant.

<u>Does not include labor or diagnostic work. The original purchaser will be responsible</u> for travel costs and expenses.

Year warranty on Hydraulic & others air-components

1

Azimuth machinery warrants to the original purchaser, to repair or, at AZIMUTH MACHINERY'S sole option, replace any parts that are found defective(hydraulic clampers (if furnished), hydraulic components, motors, air-counter balance & all others air components & hydraulic components) after examination by AZIMUTH MACHINERY's properly authorized representative, to be defective in material or workmanship under normal use within three years or, if sooner, 3,000 hours of running time after the original date of shipment from the AZIMUTH MACHINERY plant.

<u>Does not include labor or diagnostic work. The original purchaser will be responsible</u> for travel costs and expenses.

¹ 150\$/hour + traveling expense.

